F.L. Lewis Moncrief-O'Donnell Endowed Chair Head, Controls & Sensors Group

Automation & Robotics Research Institute (ARRI) The University of Texas at Arlington Nonlinear Network Structures for Feedback Control

http://ARRI.uta.edu/acs

Organized and invited by Professor Jie Huang, CUHK

SCUT / CUHK Lectures on Advances in Control March 2005

Relevance- Machine Feedback Control

High-Speed Precision Motion Control with unmodeled dynamics, vibration suppression, disturbance rejection, friction compensation, deadzone/backlash control

Single-Wheel/Terrain System with Nonlinearities

Newton's Law

LaGrange's Eqs. Of Motion —

Mechanical Motion Systems (Vehicles, Robots)

Darwinian Selection & Population Dynamics

Volterra's fishes

$$\dot{x}_1 = ax_1 - bx_1x_2$$
$$\dot{x}_2 = -cx_2 + dx_1x_2$$
$$x_1 = \text{prey}$$
$$x_2 = \text{predator}$$

Effects of Overcrowding Limited food and resources

$$\dot{x}_{1} = ax_{1} - bx_{1}x_{2} - ex_{1}^{2}$$
$$\dot{x}_{2} = -cx_{2} + dx_{1}x_{2}$$

Favorable to Prey!

Dynamical System Models

Continuous-Time Systems

Discrete-Time Systems

Nonlinear system

 $\dot{x} = f(x) + g(x)u$ y = h(x) $x_{k+1} = f(x_k) + g(x_k)u_k$ $y_k = h(x_k)$

Linear system

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

$$x_{k+1} = Ax_k + B_k$$

$$y_k = Cx_k$$

Uniform Ultimate Boundedness

Т

Controller Topologies

Optimality in Biological Systems

Cell Homeostasis

Cellular Metabolism

The individual cell is a complex feedback control system. It pumps ions across the cell membrane to maintain homeostatis, and has only limited energy to do so.

Permeability control of the cell membrane

http://www.accessexcellence.org/RC/VL/GG/index.html

Optimality in Control Systems Design

Rocket Orbit Injection

Dynamics

Objectives Get to orbit in minimum time Use minimum fuel

http://microsat.sm.bmstu.ru/e-library/Launch/Dnepr_GEO.pdf

Performance Index, Cost, or Value function

INTELLIGENT CONTROL TOOLS

Both FAM and NN define a function u = f(x) from inputs to outputs

FAM and NN can both be used for: 1. Classification and Decision-Making 2. Control NN Includes Adaptive Control (Adaptive control is a 1-layer NN)

Neural Network Properties

- Learning
- Recall
- Function approximation
- Generalization
- Classification
- Association
- Pattern recognition
- Clustering
- Robustness to single node failure
- Repair and reconfiguration

Nervous system cell. http://www.sirinet.net/~jgjohnso/index.html

First groups working on NN Feedback Control in CS community

Werbos

Narendra c. 1995 Sanner & Slotine F.C. Chen & Khalil Lewis Polycarpou & Ioannou Christodoulou & Rovithakis

A.J. Calise, McFarland, Naira Hovakimyan Edgar Sanchez & Poznyak Sam Ge, Zhang, et al.

Jun Wang, Chinese Univ. Hong Kong

Industry Standard- PD Controller

Easy to implement with COTS controllers Fast

Can be implemented with a few lines of code- e.g. MATLAB

But -- Cannot handle-

High-order unmodeled dynamics

Unknown disturbances

High performance specifications for nonlinear systems

Actuator problems such as friction, deadzones, backlash

Two-layer feedforward static neural network (NN)

hidden layer

Summation eqs

$$y = W^T \sigma(V^T x)$$

$$y_i = \sigma \left(\sum_{k=1}^{K} w_{ik} \sigma \left(\sum_{j=1}^{n} v_{kj} x_j + v_{k0} \right) + w_{i0} \right)$$

Control System Design Approach

Robot dynamics

$$M(q)\ddot{q} + V_m(q,\dot{q})\dot{q} + G(q) + F(\dot{q}) + \tau_d = \tau$$

Tracking Error definition

$$e(t) = q_d(t) - q(t)$$
 $r = \dot{e} + \Lambda e$

Error dynamics

$$M\dot{r} = -V_m r + f(x) + \tau_d - \tau$$

The equations give the FB controller structure

Control System Design Approach

Robot dynamics $M(q)\ddot{q} + V_m(q,\dot{q})\dot{q} + G(q) + F(\dot{q}) + \tau_d = \tau$ Tracking Error definition $e(t) = q_d(t) - q(t)$ $r = \dot{e} + \Lambda e$ Error dynamics $M\dot{r} = -V_mr + f(x) + \tau_d - \tau$ Universal Approximation PropertyUNKNOWN FN.

Approx. unknown function by NN $f(x) = W^T \sigma(V^T x) + \varepsilon$

Define control input
$$\tau = \hat{W}^T \sigma(\hat{V}^T x) + K_v r - v$$

Closed-loop dynamics

$$\begin{split} M\dot{r} &= -V_m r - K_v r + W^T \sigma (V^T x) + \varepsilon - \hat{W}^T \sigma (\hat{V}^T x) + \tau_d + v(t) \\ M\dot{r} &= -V_m r - K_v r + \tilde{f} + \tau_d + v(t) \end{split}$$

Easy to implement with a few more lines of code

Learning feature allows for on-line updates to NN memory as dynamics change Handles unmodelled dynamics, disturbances, actuator problems such as friction NN universal basis property means no regression matrix is needed Nonlinear controller allows faster & more precise motion

Stability Proof based on Lyapunov Extension

Define a Lyapunov Energy Function

$$L = \frac{1}{2}r^{T}Mr + \frac{1}{2}tr(\widetilde{W}^{T}\widetilde{W}) + \frac{1}{2}tr(\widetilde{V}^{T}\widetilde{V})$$

Differentiate

$$\dot{L} = -r^{T}K_{v}r + \frac{1}{2}r^{T}(\dot{M} - 2V_{m})r$$

$$+ tr \,\widetilde{W}^{T}(\dot{\widetilde{W}} + \hat{\sigma}r^{T} - \hat{\sigma}'\hat{V}^{T}xr^{T})$$

$$+ tr \,\widetilde{V}^{T}(\dot{\widetilde{V}} + xr^{T}\hat{W}^{T}\hat{\sigma}') + r^{T}(w + v)$$

Problems—

1. How to characterize the NN weight errors as 'small'?- use Frobenius Norm

2. Nonlinearity in the parameters requires extra care in the proof

Using certain special tuning rules, one can show that the energy derivative is negative outside a compact set.

This proves that all signals are bounded

Theorem 1 (NN Weight Tuning for Stability)

Let the desired trajectory $q_d(t)$ and its derivatives be bounded. Let the initial tracking error be within a certain allowable set U. Let Z_M be a known upper bound on the Frobenius norm of the unknown ideal weights Z.

Take the control input as

Can also use simplified tuning- Hebbian

 $\tau = \hat{W}^T \sigma(\hat{V}^T x) + K_v r - v$ with $v(t) = -K_Z (||Z||_F + Z_M) r$.

Forward Prop term?

Let weight tuning be provided by

$$\dot{\hat{W}} = F\hat{\sigma}r^{T} - F\hat{\sigma}'\hat{V}^{T}xr^{T} - \kappa F||r||\hat{W}, \qquad \hat{\hat{V}} = Gx(\hat{\sigma}'^{T}\hat{W}r)^{T} - \kappa G||r||\hat{V}$$

with any constant matrices $F = F^T > 0, G = G^T > 0$, and scalar tuning parameter $\kappa > 0$. Initialize the weight estimates as $\hat{W} = 0, \hat{V} = random$.

Then the filtered tracking error r(t) and NN weight estimates \hat{W}, \hat{V} are uniformly ultimately
bounded. Moreover, arbitrarily small tracking error may be achieved by selecting large control
gains K_v .gains K_v .Backprop terms-
WerbosExtra robustifying terms-
Narendra's e-mod extended to NLIP systems

NN weights converge to the best learned values for the given system

NN Friction Compensator

Trajectory Tracking Controller

0.8

(a)

position

Tracking errors- solid = fixed gain controller, dashed= NN controller

Dynamic NN and Passivity

Static NN => Dynamic NN Feedback Controller

Closed-Loop System wrt Neural Network is a Dynamic (Recursive NN)

Discrete time case

$$x_{k+1} = Ax_k + W^T \sigma(V^T x_k) + u_k$$

The backprop tuning algorithms

$$\dot{\hat{W}} = F\hat{\sigma}r^{T} - F\hat{\sigma}'\hat{V}^{T}xr^{T}$$
$$\dot{\hat{V}} = Gx(\hat{\sigma}'^{T}\hat{W}r)^{T}$$

make the closed-loop system passive

The enhanced tuning algorithms

$$\dot{\hat{W}} = F\hat{\sigma}r^{T} - F\hat{\sigma}'\hat{V}^{T}xr^{T} - \kappa F||r||\hat{W}$$
$$\dot{\hat{V}} = Gx(\hat{\sigma}'^{T}\hat{W}r)^{T} - \kappa G||r||\hat{V}$$

make the closed-loop system state-strict passive

SSP gives extra robustness properties to disturbances and HF dynamics

Force Control

Flexible pointing systems

SBIR Contracts

Vehicle active suspension

What about practical Systems?

Flexible Systems with Vibratory Modes

Neural network controller for Flexible-Link robot arm

Neural network backstepping controller for Flexible-Joint robot arm

Advantages over traditional Backstepping- no regression functions needed

Actuator Nonlinearities

Deadzone

Backlash

NN in Feedforward Loop- Deadzone Compensation

 $\hat{W}_{i} = T\sigma_{i}(U_{i}^{T}w)r^{T}\hat{W}^{T}\sigma'(U^{T}u)U^{T} - k_{1}T||r||\hat{W}_{i} - k_{2}T||r|||\hat{W}_{i}||$

Acts like a 2-layer NN With enhanced backprop tuning !

Performance Results

PD controldeadzone chops out the middle NN control fixes the problem

Dynamic inversion NN compensator for system with Backlash

U.S. patent- Selmic, Lewis, Calise, McFarland

backlash chops off tops & bottoms

Performance Results

NN Observers

Needed when all states are not measured

NN Control for Discrete Time Systems

dynamics

$$x(k+1) = f(x(k)) + g(x(k))u(k)$$

Gradient descent with momentum

NN Tuning

$$\hat{W}_i(k+1) = \hat{W}_i(k) - \alpha_i \hat{\phi}_i(k) \hat{y}_i^T(k) - \Gamma \| I - \alpha_i \hat{\phi}_i(k) \hat{\phi}_i^T(k) \| \hat{W}_i(k)$$

Extra robust term

Error-based tuning

 $\hat{y}_i(k) \equiv \hat{W}_i^T(k)\hat{\varphi}_i(k) + K_v r(k), \quad for \ i = 1, \dots, N-1 \quad and \quad \hat{y}_N(k) \equiv r(k+1), \quad for \ last \ layer$

U.S. Patent- Jagannathan, Lewis

Neural Network Properties

USED

- Learning
- Recall
- Function approximation
- Generalization
- Classification
- Association
- Pattern recognition
- Clustering
- Robustness to single node failure ???
- Repair and reconfiguration

Nervous system cell. http://www.sirinet.net/~jgjohnso/index.html

Relation Between Fuzzy Systems and Neural Networks

FL Membership Functions for 2-D Input Vector x

Separable Gaussian activation functions for RBF NN

Separable triangular activation functions for CMAC NN

Fuzzy Logic Controllers

Tuning laws

Gaussian membership function

$$\phi_{A_i^l}(z_i, a_i^l, b_i^l) = e^{\left(-a_i^{l^2}(z_i-b_i^l)^2\right)}$$

$$\dot{\hat{a}} = K_a A^T \hat{W} r - k_a K_a \hat{a} \|r\|$$

$$\dot{\hat{b}} = K_b B^T \hat{W} r - k_b K_b \hat{b} \|r\|$$

$$\dot{\hat{W}} = K_W (\hat{\Phi} - A\hat{a} - B\hat{b})r^T - k_W K_W \hat{W} \|r\|$$

Dynamic Focusing of Awareness

Initial MFs

Final MFs

Elastic Fuzzy Logic- c.f. P. Werbos

 $\phi(z,a,b,c) = \phi_B(z,a,b)^{c^2} \qquad \text{Weights importance of factors in the rules}$ $\phi(z,a,b,c) = \left[\frac{\cos^2(a(z-b))}{1+a^2(z-b)^2}\right]^{c^2}$

Effect of change of membership function spread "a"

Elastic Fuzzy Logic Control

Control
$$u(t) = -K_v r - \hat{g}(x, x_d)$$

Tune Control Rep. Values

$$\dot{\hat{W}} = K_W (\hat{\Phi} - A\hat{a} - B\hat{b} - C\hat{c})r^T - k_W K_W \hat{W} \|r\|$$

Tune Membership Functions

$$\dot{\hat{a}} = K_a A^T \hat{W}r - k_a K_a \hat{a} \|r\|$$
$$\dot{\hat{b}} = K_b B^T \hat{W}r - k_b K_b \hat{b} \|r\|$$
$$\dot{\hat{c}} = K_c C^T \hat{W}r - k_c K_c \hat{c} \|r\|$$

Better Performance

Fuzzy Logic Critic NN controller

Learning FL Critic Controller

Reinforcement Learning NN Controller

High-Level NN Controllers Need Exotic Lyapunov Fns.

Reinforcement NN control

Simplified critic signal

 $R(t) = \operatorname{sgn}(r(t)) = \pm 1$

Lyapunov Fn $L(t) = \sum_{i=1}^{n} |r_i| + \frac{1}{2} tr(\widetilde{W}^T F^{-1} \widetilde{W})$

$$\dot{L} = sgn(\mathbf{r})^T \dot{\mathbf{r}} + tr(\widetilde{\mathbf{W}}^T \mathbf{F}^{-1} \dot{\widetilde{\mathbf{W}}})$$

Lyap. Deriv. contains *R(t)* !!

Tuning Law only contains R(t) $\dot{\hat{W}} = F\sigma(x)R^T - \kappa F\hat{W}$

Adaptive Reinforcement Learning

Critic is output of NN #1 $R = \hat{W}_1^T \cdot \sigma(\chi_1) + \rho,$

$$L(t) = \ln(1 + e^{-\alpha r(t)}) + \ln(1 + e^{\alpha r(t)}) + \frac{1}{2}tr(\widetilde{W}^T F^{-1}\widetilde{W})$$
$$\dot{L} = \left(\frac{\alpha^+}{1 + e^{-\alpha^+ r(t)}} + \frac{-\alpha^-}{1 + e^{\alpha^- r(t)}}\right)\dot{r}(t) + tr(\widetilde{W}^T F^{-1}\dot{\widetilde{W}})$$

Action is output of second NN

$$\hat{g}(x, x_d) = \hat{W}_2^T \sigma(\chi_2)$$

The tuning algorithm treats this as a SINGLE 2-layer NN

$$\dot{\hat{W}}_1 = -\sigma(\chi_1)R^T - \hat{W}_1,$$

$$\dot{\hat{W}}_2 = \Gamma\sigma(\chi_2) \cdot \left(r + V_1\sigma'(\chi_1)^T \hat{W}_1 R\right)^T - \Gamma \hat{W}_2,$$

Encode Information into the Value Function

Principe- Entropy

Information-Theoretic Learning $H(x_0, u(x,t), p(u)) = -\iint p(x_0, u) \ln p(x_0, u) \, du \, dx_0$

Renyi's entropy Corentropy

Brockett- Minimum-Attention Control awareness & effort (partial derivatives in PM)

$$V(x_0, u) = \int r(x, u) dt + \int \int a \left(\frac{\partial u}{\partial t}\right)^2 + b \left(\frac{\partial u}{\partial x}\right)^2 dx dt$$

2. Neural Network Solution of Optimal Design Equations

Nearly Optimal Control Based on HJ Optimal Design Equations Known system dynamics Preliminary Off-line tuning

Before-

1. Neural Networks for Feedback Control

Based on FB Control Approach Unknown system dynamics On-line tuning

H-Infinity Control Using Neural Networks

where

 $\left\|z\right\|^2 = h^T h + \left\|u\right\|^2$

L₂ Gain Problem

Find control u(t) so that

$$\int_{0}^{\infty} ||z(t)||^{2} dt = \frac{\int_{0}^{\infty} (h^{T}h + ||u||^{2}) dt}{\int_{0}^{\infty} ||d(t)||^{2} dt} \leq \gamma^{2}$$

For all L₂ disturbances And a prescribed gain γ^2

Zero-Sum differential game

Standard Bounded L₂ Gain Problem

$$J(u,d) = \int_{0}^{\infty} \left(h^{T} h + \|u\|^{2} - \gamma^{2} \|d\|^{2} \right) dt$$

Take $\|u\|^{2} = u^{T} R u$ and $\|d\|^{2} = d^{T} d$

Game theory value function

Hamilton-Jacobi Isaacs (HJI) equation

$$0 = V_x^T f + h^T h - \frac{1}{4} V_x^T g R^{-1} g^T V_x + \frac{1}{4\gamma^2} V_x^T k k^T V_x$$

Stationary Point

 $u^* = -\frac{1}{2}R^{-1}g^T(x)V_x$

Optimal control

 $d^* = \frac{1}{2\gamma^2} k^T(x) V_x$

Worst-case disturbance

If HJI has a positive definite solution V and the associated closed-loop system is AS then L₂ gain is bounded by γ^2

Problems to solve HJI

Beard proposed a successive solution method using Galerkin approx.

Viscosity Solution

Bounded L₂ Gain Problem for Constrained Input Systems

This is a quasi-norm

Weaker than a norm – homogeneity property is replaced by the weaker symmetry property $||x||_q = ||-x||_q$ Hamiltonian

$$H(x, V_x, u, d) \equiv \frac{\partial V}{\partial x}^T (f + gu + kd) + h^T h + 2 \int_0^u \phi^{-T}(v) dv - \gamma^2 d^T d$$

Stationarity conditions
$$0 = \frac{\partial H}{\partial u} = g^T V_x + 2\phi^{-1}(u)$$

Leibniz's Formula
$$0 = \frac{\partial H}{\partial d} = k^T V_x - 2\gamma^2 d$$

Solve for u(t)
Optimal inputs
$$u^* = -\frac{1}{2}\phi (g^T(x) V_x)$$

Note u(t) is bounded!
$$d^* = \frac{1}{2\gamma^2} k^T(x) V_x$$

Results for this Algorithm

The algorithm converges to $V^*(\Omega_0), \Omega_0, u^*(\Omega_0), d^*(\Omega_0)$

the optimal solution on the RAS Ω_0

Sometimes the algorithm converges to the optimal HJI solution V^*, Ω^*, u^*, d^*

For this to occur it is required that $\Omega^* \subseteq \Omega_0$

For every iteration on the disturbance d^i one has

 $V^{i}{}_{j} \leq V^{i+1}{}_{j}$ the value function increases $\Omega^{i}{}_{j} \supseteq \Omega^{i+1}{}_{j}$ the RAS decreases

For every iteration on the control u_j one has $V^{\infty}{}_j \ge V^{\infty}{}_{j+1}$ the value function decreases $\Omega^{\infty}{}_j \subseteq \Omega^{\infty}{}_{j+1}$ the RAS does not decrease **Problem-** Cannot solve the Value Equation!

Neural Network Approximation for Computational Technique

Neural Network to approximate $V^{(i)}(x)$

$$V_{L}^{(i)}(x) = \sum_{j=1}^{L} w_{j}^{(i)} \sigma_{j}(x) = W_{L}^{T(i)} \overline{\sigma}_{L}(x),$$

Value function gradient approximation is

$$\frac{\partial V_{L}^{(i)}}{\partial x} = \frac{\partial \overline{\sigma}_{L}(L)}{\partial x}^{T} W_{L}^{(i)} = \nabla \overline{\sigma}_{L}^{T}(x) W_{L}^{(i)}$$

Substitute into Value Equation to get

$$0 = w_j^{i^T} \nabla \sigma(x) \dot{x} + r(x, u_j, d^i) = w_j^{i^T} \nabla \sigma(x) f(x, u_j, d^i) + h^T h + \|u_j\|^2 - \gamma^2 \|d^i\|^2$$

Therefore, one may solve for NN weights at iteration (*i*,*j*)

Neural Network Feedback Controller

Optimal Solution

$$d = \frac{1}{2} k^{T}(x) \nabla \overline{\sigma}_{L}^{T} W_{L}.$$
$$u = -\frac{1}{2} \phi \left(g^{T}(x) \nabla \overline{\sigma}_{L}^{T} W_{L} \right)$$

A NN feedback controller with nearly optimal weights

Example: Linear system

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -0.5 \\ 1 & 1.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} u, \quad |u| \le 1$$

$$V_{15}(x_1, x_2) = w_1 x_1^2 + w_2 x_2^2 + w_3 x_1 x_2 + w_4 x_1^4 + w_5 x_2^4 + w_6 x_1^3 x_2 + w_7 x_1^2 x_2^2 + w_8 x_1 x_2^3 + w_9 x_1^6 + w_{10} x_2^6 + w_{11} x_1^5 x_2 + w_{12} x_1^4 x_2^2 + w_{13} x_1^3 x_2^3 + w_{14} x_1^2 x_2^4 + w_{15} x_1 x_2^5$$

Activation functions = even polynomial basis up to order 6

Initial Gain found by LQR

Optimal NN solution

RAS found by integrating $\dot{x} = -f(x)$ That is, reverse time $dt = -d\tau$

Rotational-Translational Actuator Benchmark Problem

F is a disturbance

Control input is torque N

Rotational-Translational Actuator Benchmark Problem

3. Approximate Dynamic Programming

Nearly Optimal Control Based on recursive equation for the optimal value Usually Known system dynamics (except Q learning) The Goal – unknown dynamics On-line tuning

Before-

2. Neural Network Solution of Optimal Design Equations

Nearly Optimal Control Based on HJ Optimal Design Equations Known system dynamics Preliminary Off-line tuning

1. Neural Networks for Feedback Control

Based on FB Control Approach Unknown system dynamics On-line tuning

IEEE Trans. Neural Networks Special Issue on Neural Networks for Feedback Control

Lewis, Wunsch, Prokhorov, Jie Huang, Parisini

Due date 1 December

Bring together: Feedback control system community Approximate Dynamic Programming community Neural Network community

Discrete-Time Systems

$$x_{k+1} = f(x_k, u_k)$$
 $V(x_k) = \sum_{i=k}^{N} \gamma^{i-k} r(x_k, u_k)$

Value in difference form -

$$V_h(x_k) = r(x_k, h(x_k)) + \gamma V_h(x_{k+1})$$
 Recursive form
Consistency equation

Howard Policy Iteration- Iterate the following until convergence

1. Find the value for the prescribed policy

$$V_{j}(x_{k}) = r(x_{k}, h_{j}(x_{k})) + \gamma V_{j}(x_{k+1})$$

solve completely

2. Policy improvement

$$h_{j+1}(x_k) = \arg\min_{u_k}(r(x_k, u_k) + \gamma V_j(x_{k+1}))$$

Four ADP Methods proposed by Werbos

Critic NN to approximate:

Action NN to approximate the Control

Bertsekas- Neurodynamic Programming

Barto & Bradtke- Q-learning proof (Imposed a settling time)

Value in differential form -

$$0 = \left(\frac{\partial V}{\partial x}\right)^{T} (f + gu + kd) + r(x, u, d) \equiv H(x, \frac{\partial V}{\partial x}, u, d) \quad \text{Consistency equation}$$
$$V_{h}(x_{k}) = r(x_{k}, h(x_{k})) + \gamma V_{h}(x_{k+1})$$
$$u^{*}(x(t)) = -\frac{1}{2}g^{T}(x)\frac{\partial V^{*}}{\partial x} \qquad d^{*}(x(t)) = \frac{1}{2\gamma^{2}}k^{T}(x)\frac{\partial V^{*}}{\partial x}$$

HJB equation

$$0 = \left(\frac{dV^*}{dx}\right)^T f + h^T h - \frac{1}{4} \left(\frac{dV^*}{dx}\right)^T gg^T \frac{dV^*}{dx} + \frac{1}{4\gamma^2} \left(\frac{dV^*}{dx}\right)^T kk^T \frac{dV^*}{dx}$$
Continuous Time Policy Iteration

Select a stabilizing initial control 1. Outer loop- update control Initial disturbance set to zero

Abu-Khalaf and Lewis- H inf

Saridis – H₂

2. Inner loop- update disturbance Solve Lyapunov equation

$$\frac{\partial (V^{i}_{j})}{\partial x}^{T} \left(f + gu_{j} + kd^{i} \right) + h^{T}h + \left\| u_{j} \right\|^{2} - \gamma^{2} \left\| d^{i} \right\|^{2} = 0$$

Inner loop disturbance update

$$d^{i+1} = \frac{1}{2\gamma^2} k^T(x) \frac{\partial V^i{}_j}{\partial x}$$

go to 2. Until convergence

Outer loop update

$$u_{j+1} = -\frac{1}{2} \left(g^T(x) \frac{\partial V^i{}_j}{\partial x} \right)$$

Go to 1. Until convergence c.f. Howard work in DT Systems

Neural Network Approximation of Value Function

$$\hat{V}(x, w_j^i) = w_j^i \sigma(x)$$

Lyapunov equation becomes

$$0 = w_j^{i^T} \nabla \sigma(x) \dot{x} + r(x, u_j, d^i) = w_j^{i^T} \nabla \sigma(x) f(x, u_j, d^i) + h^T h + \left\| u_j \right\|^2 - \gamma^2 \left\| d^i \right\|^2$$

Control action

$$u^*(x) = -\frac{1}{2}R^{-1}g^T(x)\nabla\sigma^T(x)w$$

CT Approx Policy Iteration Abu-Khalaf & Lewis

Nearly optimal FB control Off-line tuning Known dynamics

CT Nearly Optimal NN feedback

Continuous-time adaptive critic

Abu-Khalaf & Lewis (c.f. Doya)

On-line tuning

Critic NN $V(x) = w^T \sigma(x)$

Hamiltonian (CT consistency check)

$$H(x,\frac{\partial V}{\partial x},u) = \dot{V} + r(x,u) = \left(\frac{\partial V}{\partial x}\right)^T \dot{x} + r(x,u) = \left(\frac{\partial V}{\partial x}\right)^T f(x,u) + r(x,u) = 0$$

residual eq error

$$\delta = \frac{dw^{T}\sigma}{dt} + r(x,u) = w^{T}\nabla\sigma(x)\dot{x} + r(x,u) = w^{T}\nabla\sigma(x)f(x,u) + r(x,u)$$

$$E = \frac{1}{2}|\delta|^{2}$$

$$\frac{\partial E}{\partial w} = \delta(t)\frac{\partial \delta}{\partial w} = \delta(t)\nabla\sigma(x)f(x,u)$$

$$gradient$$

$$\dot{w} = -\alpha \nabla\sigma(x)f(x,u) \delta$$
Update weights using, e.g., gradient descent Or RLS

Action NN

$$Y_{2} = -\frac{1}{2}R^{-1}g^{T}(x)\nabla\sigma^{T}(x)w = \overline{\phi}^{T}w \qquad \text{Target action}$$

$$\overline{\phi}^{T}(x) = -\frac{1}{2}R^{-1}g^{T}(x)\nabla\sigma^{T}(x) \qquad \text{Activation fns depend on system dynamics}$$

$$\hat{Y}_{2} = \overline{\phi}^{T}(x)v \qquad \text{Action NN}$$

$$e_{2}(x) = \hat{Y}_{2} - Y_{2} = -\frac{1}{2}R^{-1}g^{T}(x)\nabla\sigma^{T}(x) [v-w] = \overline{\phi}^{T}(x)[v-w]$$

$$\dot{v} = -\beta \ \overline{\phi}(x)e_{2}(x) \qquad \text{update weights by gradient descent}$$
Alternative, simply set $u(x) = Y_{2} = -\frac{1}{2}R^{-1}g^{T}(x)\nabla\sigma^{T}(x)w = \overline{\phi}^{T}w$

Does not work- proof development so far indicates that critic NN must be tuned faster than action NN i.e. $\alpha > \beta$

c.f. Bradtke & Barto DT Q learning work

Small Time-Step Approximate Tuning for Continuous-Time Adaptive Critics

Sampled data systems

$$H(x, \frac{\partial V}{\partial x}, u) = \dot{V}(x) + r(x, u) \approx \frac{V_{t+1} - V_t}{\Delta t} + r(x, u) \approx \frac{V_{t+1} - V_t}{\Delta t} + \frac{r^D(x_t, u_t)}{\Delta t}$$

$$A_{1}^{*}(x_{t}, u_{t}) = \frac{r^{D}(x_{t}, u_{t}) + V(x_{t+1}) - V^{*}(x_{t})}{\Delta t}$$

Baird's Advantage function

This is not in standard DT form

$$V_{h}(x_{k}) = r(x_{k}, h(x_{k})) + \gamma V_{h}(x_{k+1})$$

For More Information Journal papers on http://arri.uta.edu/acs

Optimal Control Lewis & Syrmos 1995 BRIAN L. STEVENS and FRANK L. LEWIS

AIRCRAFT CONTROL AND SIMULATION

second edition **Control Engineering Series**

Robot Manipulator Control Theory and Practice

Second Edition, Revised and Expanded

Frank L. Lewis Darren M. Dawson Chaouki T. Abdallah

In Progress: M. Abu-Khalaf, Jie Huang, F.L. Lewis Nearly Optimal Control by HJ Equation Solution Using Neural Networks

Theorem 1. Necessary and Sufficient Conditions for H-infinity Static OPFB Control

Assume that Q>0, then system (1) is output-feedback stabilizable with L_2 gain bounded by γ If and only if:

i. (*A*, *C*) is detectable

ii. There exist matrices K^* and L such that

$$K * C = R^{-1}(B^T P + L)$$

where P > 0, $P^T = P$, is a solution of

$$PA + A^{T}P + Q + \frac{1}{\gamma^{2}}PDD^{T}P - PBR^{-1}B^{T}P + L^{T}R^{-1}L = 0$$

ONLY TWO COUPLED EQUATIONS

c.f. results by Kucera and De Souza

Note there is an (A,B) stabilizability condition hidden in the existence of Solution to the Riccati eq.

Solution Algorithm 1- c.f. Geromel

1. Initialize: Set n=0, $L_0 = 0$, and select γ , Q, R

2. *n-th* iteration: solve for P_n in the ARE

$$P_n A + A^T P_n + Q + \frac{1}{\gamma^2} P_n D D^T P_n - P_n B R^{-1} B^T P_n + L_n^T R^{-1} L_n = 0$$

Evaluate gain and update L

$$K_{n+1} = R^{-1} (B^T P_n + L) C^T (CC^T)^{-1}$$
$$L_{n+1} = RK_{n+1} C - B^T P_n$$

Until Convergence

Based on ARE, so no initial stabilizing gain needed !!

Tries to project gain onto nullspace perp. of C using degrees of freedom in L

Aircraft Autopilot Design

F-16 Normal Acceleration Regulator Design

$$y = [\alpha_F \quad q \quad e \quad \varepsilon]^T$$
$$u = -Ky = -[k_\alpha \quad k_q \quad k_e \quad k_I]y$$

Theorem 2. - new work

Parametrization of all H-infinity Static SVFB Controls

Assume that Q>0, then K is a stabilizing SVFB with L_2 gain bounded by γ If and only if:

i.(A, B) is stabilizable

ii. There exist a matrix *L* such that

$$K = R^{-1}(B^T P + L)$$

where P > 0, $P^T = P$, is a solution of

 $PA + A^{T}P + Q + \frac{1}{\gamma^{2}}PDD^{T}P - PBR^{-1}B^{T}P + L^{T}R^{-1}L = 0$

OPFB is a special case

Chaos in Dynamic Neural Networks c.f. Ron Chen

 \mathbf{u}_1

$$x_{k+1} = Ax_k + W^T \sigma(V^T x_k) + u_k$$

Jun Wang

$$z_{k+1} = \beta z_k$$

$$y_{k+1} = \alpha y_k + g - z_k \left(\frac{1}{1 + e^{-y_k/\rho}} - I\right)$$

%MATLAB file for chaotic NN from **Jun Wang's** paper

function [ki,x,y,z]=tcnn(N); y(1)= rand; ki(1)=1; z(1)= 0.08; a=0.9; e= 1/250; Io=0.65; g= 0.0001; b=0.001;

